package autotrader import ( "math" "time" ) // RSI calculates the Relative Strength Index for a given Series. Typically, the input series is the Close column of a DataFrame. Returns a Series of RSI values of the same length as the input. // // Traditionally, an RSI reading of 70 or above indicates an overbought condition, and a reading of 30 or below indicates an oversold condition. // // Typically, the RSI is calculated with a period of 14 days. func RSI(series *FloatSeries, periods int) *FloatSeries { // Calculate the difference between each day's close and the previous day's close. delta := series.Copy().MapReverse(func(i int, v float64) float64 { if i == 0 { return 0 } return v - series.Value(i-1) }) // Calculate the average gain and average loss. avgGain := &FloatSeries{delta.Copy(). Map(func(i int, val float64) float64 { return math.Max(val, 0) }). Rolling(periods).Average()} avgLoss := &FloatSeries{delta.Copy(). Map(func(i int, val float64) float64 { return math.Abs(math.Min(val, 0)) }). Rolling(periods).Average()} // Calculate the RSI. return avgGain.Map(func(i int, val float64) float64 { loss := avgLoss.Float(i) if loss == 0 { return float64(100) } return float64(100 - 100/(1+val/loss)) }).SetName("RSI") } // Ichimoku calculates the Ichimoku Cloud for a given Series. Returns a DataFrame of the same length as the input with float64 values. The series input must contain only float64 values, which are traditionally the close prices. // // The standard values: // - convPeriod: 9 // - basePeriod: 26 // - leadingPeriods: 52 // // DataFrame columns: // - Conversion // - Base // - LeadingA // - LeadingB // - Lagging func Ichimoku(series *IndexedSeries[UnixTime], convPeriod, basePeriod, leadingPeriods int) *IndexedFrame[UnixTime] { // TODO: make this run concurrently. // Calculate the Conversion Line. conv := series.Copy().Rolling(convPeriod).Max().Add(series.Copy().Rolling(convPeriod).Min()). Map(func(_ UnixTime, _ int, val any) any { return val.(float64) / float64(2) }) // Calculate the Base Line. base := series.Copy().Rolling(basePeriod).Max().Add(series.Copy().Rolling(basePeriod).Min()). Map(func(_ UnixTime, _ int, val any) any { return val.(float64) / float64(2) }) // Calculate the Leading Span A. leadingA := conv.Copy().Rolling(leadingPeriods).Max().Add(base.Copy().Rolling(leadingPeriods).Max()). Map(func(_ UnixTime, _ int, val any) any { return val.(float64) / float64(2) }) // Calculate the Leading Span B. leadingB := series.Copy().Rolling(leadingPeriods).Max().Add(series.Copy().Rolling(leadingPeriods).Min()). Map(func(_ UnixTime, _ int, val any) any { return val.(float64) / float64(2) }) // Calculate the Lagging Span. lagging := series.Copy().ShiftIndex(-leadingPeriods, UnixTimeStep(time.Hour)) // Return a DataFrame of the results. return NewIndexedFrame( conv.SetName("Conversion"), base.SetName("Base"), leadingA.SetName("LeadingA"), leadingB.SetName("LeadingB"), lagging.SetName("Lagging"), ) }