autotrader/indicators.go
2023-05-24 16:31:13 -05:00

70 lines
2.6 KiB
Go

package autotrader
import (
"math"
"time"
)
// RSI calculates the Relative Strength Index for a given Series. Typically, the input series is the Close column of a DataFrame. Returns a Series of RSI values of the same length as the input.
//
// Traditionally, an RSI reading of 70 or above indicates an overbought condition, and a reading of 30 or below indicates an oversold condition.
//
// Typically, the RSI is calculated with a period of 14 days.
func RSI(series *FloatSeries, periods int) *FloatSeries {
// Calculate the difference between each day's close and the previous day's close.
delta := series.Copy().MapReverse(func(i int, v float64) float64 {
if i == 0 {
return 0
}
return v - series.Value(i-1)
})
// Calculate the average gain and average loss.
avgGain := &FloatSeries{delta.Copy().
Map(func(i int, val float64) float64 { return math.Max(val, 0) }).
Rolling(periods).Average()}
avgLoss := &FloatSeries{delta.Copy().
Map(func(i int, val float64) float64 { return math.Abs(math.Min(val, 0)) }).
Rolling(periods).Average()}
// Calculate the RSI.
return avgGain.Map(func(i int, val float64) float64 {
loss := avgLoss.Float(i)
if loss == 0 {
return float64(100)
}
return float64(100 - 100/(1+val/loss))
}).SetName("RSI")
}
// Ichimoku calculates the Ichimoku Cloud for a given Series. Returns a DataFrame of the same length as the input with float64 values. The series input must contain only float64 values, which are traditionally the close prices.
//
// The standard values:
// - convPeriod: 9
// - basePeriod: 26
// - leadingPeriods: 52
//
// DataFrame columns:
// - Conversion
// - Base
// - LeadingA
// - LeadingB
// - Lagging
func Ichimoku(price *IndexedFrame[UnixTime], convPeriod, basePeriod, leadingPeriods int, frequency time.Duration) *IndexedFrame[UnixTime] {
// TODO: make this run concurrently.
conv := price.Highs().Copy().Rolling(convPeriod).Max().Add(price.Lows().Copy().Rolling(convPeriod).Min()).DivFloat(2)
base := price.Highs().Copy().Rolling(basePeriod).Max().Add(price.Lows().Copy().Rolling(basePeriod).Min()).DivFloat(2)
leadingA := conv.Copy().Add(base).DivFloat(2)
leadingB := price.Highs().Copy().Rolling(leadingPeriods).Max().Add(price.Lows().Copy().Rolling(leadingPeriods).Min()).DivFloat(2)
lagging := price.Closes().Copy()
// Return a DataFrame of the results.
return NewIndexedFrame(
conv.SetName("Conversion"),
base.SetName("Base"),
leadingA.SetName("LeadingA").ShiftIndex(leadingPeriods, UnixTimeStep(frequency)),
leadingB.SetName("LeadingB").ShiftIndex(leadingPeriods, UnixTimeStep(frequency)),
lagging.SetName("Lagging").ShiftIndex(-basePeriod, UnixTimeStep(frequency)),
)
}