mirror of
https://github.com/lukewilson2002/autotrader.git
synced 2025-06-15 08:23:51 +00:00
74 lines
2.7 KiB
Go
74 lines
2.7 KiB
Go
package autotrader
|
|
|
|
import "math"
|
|
|
|
// RSI calculates the Relative Strength Index for a given Series. Typically, the input series is the Close column of a DataFrame. Returns a Series of RSI values of the same length as the input.
|
|
//
|
|
// Traditionally, an RSI reading of 70 or above indicates an overbought condition, and a reading of 30 or below indicates an oversold condition.
|
|
//
|
|
// Typically, the RSI is calculated with a period of 14 days.
|
|
func RSI(series *Series, periods int) *Series {
|
|
// Calculate the difference between each day's close and the previous day's close.
|
|
delta := series.Copy().Map(func(i int, v interface{}) interface{} {
|
|
if i == 0 {
|
|
return float64(0)
|
|
}
|
|
return v.(float64) - series.Value(i-1).(float64)
|
|
})
|
|
// Calculate the average gain and average loss.
|
|
avgGain := delta.Copy().
|
|
Map(func(i int, val interface{}) interface{} { return math.Max(val.(float64), 0) }).
|
|
Rolling(periods).Average()
|
|
avgLoss := delta.Copy().
|
|
Map(func(i int, val interface{}) interface{} { return math.Abs(math.Min(val.(float64), 0)) }).
|
|
Rolling(periods).Average()
|
|
// Calculate the RSI.
|
|
return avgGain.Map(func(i int, val interface{}) interface{} {
|
|
loss := avgLoss.Float(i)
|
|
if loss == 0 {
|
|
return float64(100)
|
|
}
|
|
return float64(100. - 100./(1.+val.(float64)/loss))
|
|
})
|
|
}
|
|
|
|
// Ichimoku calculates the Ichimoku Cloud for a given Series. Returns a DataFrame of the same length as the input with float64 values. The series input must contain only float64 values, which are traditionally the close prices.
|
|
//
|
|
// The standard values:
|
|
// - convPeriod: 9
|
|
// - basePeriod: 26
|
|
// - leadingPeriods: 52
|
|
//
|
|
// DataFrame columns:
|
|
// - Conversion
|
|
// - Base
|
|
// - LeadingA
|
|
// - LeadingB
|
|
// - Lagging
|
|
func Ichimoku(series *Series, convPeriod, basePeriod, leadingPeriods int) *Frame {
|
|
// Calculate the Conversion Line.
|
|
conv := series.Copy().Rolling(convPeriod).Max().Add(series.Copy().Rolling(convPeriod).Min()).
|
|
Map(func(i int, val any) any {
|
|
return val.(float64) / float64(2)
|
|
})
|
|
// Calculate the Base Line.
|
|
base := series.Copy().Rolling(basePeriod).Max().Add(series.Copy().Rolling(basePeriod).Min()).
|
|
Map(func(i int, val any) any {
|
|
return val.(float64) / float64(2)
|
|
})
|
|
// Calculate the Leading Span A.
|
|
leadingA := conv.Copy().Rolling(leadingPeriods).Max().Add(base.Copy().Rolling(leadingPeriods).Max()).
|
|
Map(func(i int, val any) any {
|
|
return val.(float64) / float64(2)
|
|
})
|
|
// Calculate the Leading Span B.
|
|
leadingB := series.Copy().Rolling(leadingPeriods).Max().Add(series.Copy().Rolling(leadingPeriods).Min()).
|
|
Map(func(i int, val any) any {
|
|
return val.(float64) / float64(2)
|
|
})
|
|
// Calculate the Lagging Span.
|
|
// lagging := series.Shift(-leadingPeriods)
|
|
// Return a DataFrame of the results.
|
|
return NewFrame(conv, base, leadingA, leadingB)
|
|
}
|