autotrader/data.go
2023-05-17 17:57:56 -05:00

959 lines
26 KiB
Go

package autotrader
import (
"bytes"
"encoding/csv"
"errors"
"fmt"
"io"
"math"
"os"
"strconv"
"strings"
"text/tabwriter"
"time"
df "github.com/rocketlaunchr/dataframe-go"
"golang.org/x/exp/maps"
"golang.org/x/exp/slices"
)
type Series interface {
Signaler
// Reading data.
Copy(start, end int) Series
Len() int
Name() string // Name returns the immutable name of the Series.
Float(i int) float64
Int(i int) int64
Str(i int) string
Time(i int) time.Time
Value(i int) interface{}
ValueRange(start, end int) []interface{}
Values() []interface{} // Values is the same as ValueRange(0, -1).
// Writing data.
SetName(name string) Series
SetValue(i int, val interface{}) Series
Push(val interface{}) Series
// Statistical functions.
Rolling(period int) *RollingSeries
// WithValueFunc is used to implement other types of Series that may modify the values by applying a function before returning them, for example. This returns a Series that is a copy of the original with the new value function used whenever a value is requested outside of the Value() method, which will still return the original value.
WithValueFunc(value func(i int) interface{}) Series
}
type Frame interface {
// Reading data.
Contains(names ...string) bool // Contains returns true if the frame contains all the columns specified.
Copy(start, end int) Frame
Len() int
Names() []string
Series(name string) Series
String() string
Value(column string, i int) interface{}
Float(column string, i int) float64
Int(column string, i int) int64
Str(column string, i int) string
Time(column string, i int) time.Time
// Writing data.
PushSeries(s ...Series) error
PushValues(values map[string]interface{}) error
RemoveSeries(name string)
// Easy access functions for common columns.
ContainsDOHLCV() bool // ContainsDOHLCV returns true if the frame contains all the columns: Date, Open, High, Low, Close, and Volume.
Date(i int) time.Time
Open(i int) float64
High(i int) float64
Low(i int) float64
Close(i int) float64
Volume(i int) float64
Dates() Series
Opens() Series
Highs() Series
Lows() Series
Closes() Series
Volumes() Series
PushCandle(date time.Time, open, high, low, close float64, volume int64) error
}
// AppliedSeries is like Series, but it applies a function to each row of data before returning it.
type AppliedSeries struct {
Series
apply func(i int, val interface{}) interface{}
}
func (s *AppliedSeries) Value(i int) interface{} {
return s.apply(EasyIndex(i, s.Len()), s.Series.Value(i))
}
func (s *AppliedSeries) WithValueFunc(value func(i int) interface{}) Series {
return &AppliedSeries{Series: s.Series.WithValueFunc(value), apply: s.apply}
}
func NewAppliedSeries(s Series, apply func(i int, val interface{}) interface{}) *AppliedSeries {
appliedSeries := &AppliedSeries{apply: apply}
appliedSeries.Series = s.WithValueFunc(appliedSeries.Value)
return appliedSeries
}
type RollingSeries struct {
Series
period int
}
// Average is an alias for Mean.
func (s *RollingSeries) Average() *AppliedSeries {
return s.Mean()
}
func (s *RollingSeries) Mean() *AppliedSeries {
return NewAppliedSeries(s, func(_ int, v interface{}) interface{} {
switch v := v.(type) {
case []interface{}:
if len(v) == 0 {
return nil
}
switch v[0].(type) {
case float64:
var sum float64
for _, v := range v {
sum += v.(float64)
}
return sum / float64(len(v))
case int64:
var sum int64
for _, v := range v {
sum += v.(int64)
}
return sum / int64(len(v))
default:
return v[len(v)-1] // Do nothing
}
default:
panic(fmt.Sprintf("expected a slice of values, got %t", v))
}
})
}
func (s *RollingSeries) EMA() *AppliedSeries {
return NewAppliedSeries(s, func(i int, v interface{}) interface{} {
switch v := v.(type) {
case []interface{}:
if len(v) == 0 {
return nil
}
switch v[0].(type) {
case float64:
ema := v[0].(float64)
for _, v := range v[1:] {
ema += (v.(float64) - ema) * 2 / (float64(s.period) + 1)
}
return ema
case int64:
ema := v[0].(int64)
for _, v := range v[1:] {
ema += (v.(int64) - ema) * 2 / (int64(s.period) + 1)
}
return ema
default: // string, time.Time
return v[len(v)-1] // Do nothing
}
default:
panic(fmt.Sprintf("expected a slice of values, got %t", v))
}
})
}
func (s *RollingSeries) Median() *AppliedSeries {
return NewAppliedSeries(s, func(_ int, v interface{}) interface{} {
switch v := v.(type) {
case []interface{}:
if len(v) == 0 {
return nil
}
switch v[0].(type) {
case float64:
if len(v) == 0 {
return float64(0)
}
slices.SortFunc(v, func(a, b interface{}) bool {
x, y := a.(float64), b.(float64)
return x < y || (math.IsNaN(x) && !math.IsNaN(y))
})
if len(v)%2 == 0 {
return (v[len(v)/2-1].(float64) + v[len(v)/2].(float64)) / 2
}
return v[len(v)/2]
case int64:
if len(v) == 0 {
return int64(0)
}
slices.SortFunc(v, func(a, b interface{}) bool {
x, y := a.(int64), b.(int64)
return x < y
})
if len(v)%2 == 0 {
return (v[len(v)/2-1].(int64) + v[len(v)/2].(int64)) / 2
}
return v[len(v)/2]
default: // string, time.Time
return v[len(v)-1] // Do nothing
}
default:
panic(fmt.Sprintf("expected a slice of values, got %t", v))
}
})
}
func (s *RollingSeries) StdDev() *AppliedSeries {
return NewAppliedSeries(s, func(i int, v interface{}) interface{} {
switch v := v.(type) {
case []interface{}:
if len(v) == 0 {
return nil
}
switch v[0].(type) {
case float64:
mean := s.Mean().Value(i).(float64) // Take the mean of the last period values for the current index
var sum float64
for _, v := range v {
sum += (v.(float64) - mean) * (v.(float64) - mean)
}
return math.Sqrt(sum / float64(len(v)))
case int64:
mean := s.Mean().Value(i).(int64)
var sum int64
for _, v := range v {
sum += (v.(int64) - mean) * (v.(int64) - mean)
}
return int64(math.Sqrt(float64(sum) / float64(len(v))))
default: // A slice of something else, just return the last value
return v[len(v)-1] // Do nothing
}
default:
panic(fmt.Sprintf("expected a slice of values, got %t", v))
}
})
}
// Value returns []interface{} up to `period` long. The last item in the slice is the item at i. If i is out of bounds, nil is returned.
func (s *RollingSeries) Value(i int) interface{} {
items := make([]interface{}, 0, s.period)
i = EasyIndex(i, s.Len())
if i < 0 || i >= s.Len() {
return items
}
for j := i; j > i-s.period && j >= 0; j-- {
// items = append(items, s.Series.Value(j))
items = slices.Insert(items, 0, s.Series.Value(j))
}
return items
}
func (s *RollingSeries) WithValueFunc(value func(i int) interface{}) Series {
return &RollingSeries{Series: s.Series.WithValueFunc(value), period: s.period}
}
// DataSeries is a Series that wraps a column of data. The data can be of the following types: float64, int64, string, or time.Time.
//
// Signals:
// - LengthChanged(int) - when the data is appended or an item is removed.
// - NameChanged(string) - when the name is changed.
type DataSeries struct {
SignalManager
data df.Series
value func(i int) interface{}
}
// Copy copies the Series from start to end (inclusive). If end is -1, it will copy to the end of the Series. If start is out of bounds, nil is returned.
func (s *DataSeries) Copy(start, end int) Series {
var _end *int
if start < 0 || start >= s.Len() {
return nil
} else if end >= 0 {
if end < start {
return nil
}
_end = &end
}
return &DataSeries{
SignalManager: SignalManager{},
data: s.data.Copy(df.Range{Start: &start, End: _end}),
value: s.value,
}
}
func (s *DataSeries) Name() string {
return s.data.Name()
}
func (s *DataSeries) SetName(name string) Series {
if name == s.Name() {
return s
}
s.data.Rename(name)
s.SignalEmit("NameChanged", name)
return s
}
func (s *DataSeries) Len() int {
if s.data == nil {
return 0
}
return s.data.NRows()
}
func (s *DataSeries) Rolling(period int) *RollingSeries {
rollingSeries := &RollingSeries{period: period}
rollingSeries.Series = s.WithValueFunc(rollingSeries.Value)
return rollingSeries
}
func (s *DataSeries) Push(value interface{}) Series {
if s.data != nil {
s.data.Append(value)
s.SignalEmit("LengthChanged", s.Len())
}
return s
}
func (s *DataSeries) SetValue(i int, val interface{}) Series {
if s.data != nil {
s.data.Update(EasyIndex(i, s.Len()), val)
}
return s
}
func (s *DataSeries) Value(i int) interface{} {
if s.data == nil {
return nil
}
i = EasyIndex(i, s.Len()) // Allow for negative indexing.
return s.data.Value(i)
}
// ValueRange returns a slice of values from start to end, including start and end. The first value is at index 0. A negative value for start or end can be used to get values from the latest, like Python's negative indexing. If end is less than zero, it will be sliced from start to the last item. If start or end is out of bounds, nil is returned. If start is greater than end, nil is returned.
func (s *DataSeries) ValueRange(start, end int) []interface{} {
if s.data == nil {
return nil
}
start = EasyIndex(start, s.Len())
if end < 0 {
end = s.Len() - 1
}
if start < 0 || start >= s.Len() || end >= s.Len() || start > end {
return nil
}
items := make([]interface{}, end-start+1)
for i := start; i <= end; i++ {
items[i-start] = s.value(i)
}
return items
}
func (s *DataSeries) Values() []interface{} {
if s.data == nil {
return nil
}
return s.ValueRange(0, -1)
}
func (s *DataSeries) Float(i int) float64 {
val := s.value(i)
if val == nil {
return 0
}
switch val := val.(type) {
case float64:
return val
default:
return 0
}
}
func (s *DataSeries) Int(i int) int64 {
val := s.value(i)
if val == nil {
return 0
}
switch val := val.(type) {
case int64:
return val
default:
return 0
}
}
func (s *DataSeries) Str(i int) string {
val := s.value(i)
if val == nil {
return ""
}
switch val := val.(type) {
case string:
return val
default:
return ""
}
}
func (s *DataSeries) Time(i int) time.Time {
val := s.value(i)
if val == nil {
return time.Time{}
}
switch val := val.(type) {
case time.Time:
return val
default:
return time.Time{}
}
}
func (s *DataSeries) WithValueFunc(value func(i int) interface{}) Series {
return &DataSeries{
SignalManager: s.SignalManager,
data: s.data,
value: value,
}
}
func NewDataSeries(data df.Series) *DataSeries {
dataSeries := &DataSeries{
SignalManager: SignalManager{},
data: data,
}
dataSeries.value = dataSeries.Value
return dataSeries
}
type DataFrame struct {
series map[string]Series
rowCounts map[string]int
// data *df.DataFrame // DataFrame with a Date, Open, High, Low, Close, and Volume column.
}
func NewDataFrame(series ...Series) *DataFrame {
d := &DataFrame{}
d.PushSeries(series...)
return d
}
// NewDOHLCVDataFrame returns a DataFrame with empty Date, Open, High, Low, Close, and Volume columns.
// Use the PushCandle method to add candlesticks in an easy and type-safe way.
func NewDOHLCVDataFrame() *DataFrame {
return NewDataFrame(
NewDataSeries(df.NewSeriesTime("Date", nil)),
NewDataSeries(df.NewSeriesFloat64("Open", nil)),
NewDataSeries(df.NewSeriesFloat64("High", nil)),
NewDataSeries(df.NewSeriesFloat64("Low", nil)),
NewDataSeries(df.NewSeriesFloat64("Close", nil)),
NewDataSeries(df.NewSeriesInt64("Volume", nil)),
)
}
// Copy copies the DataFrame from start to end (inclusive). If end is -1, it will copy to the end of the DataFrame. If start is out of bounds, nil is returned.
func (d *DataFrame) Copy(start, end int) Frame {
out := &DataFrame{}
for _, v := range d.series {
newSeries := v.Copy(start, end)
out.PushSeries(newSeries)
}
return out
}
// Len returns the number of rows in the DataFrame or 0 if the DataFrame is nil. A value less than zero means the
// DataFrame has Series of varying lengths.
func (d *DataFrame) Len() int {
if len(d.series) == 0 {
return 0
}
// Check if all the Series have the same length.
var length int
for _, v := range d.rowCounts {
if length == 0 {
length = v
} else if length != v {
return -1
}
}
return length
}
func (d *DataFrame) String() string {
if d == nil {
return fmt.Sprintf("%T[nil]", d)
}
names := d.Names() // Defines the order of the columns.
series := make([]Series, len(names))
for i, name := range names {
series[i] = d.Series(name)
}
buffer := new(bytes.Buffer)
t := tabwriter.NewWriter(buffer, 0, 0, 1, ' ', 0)
fmt.Fprintf(t, "%T[%dx%d]\n", d, d.Len(), len(d.series))
fmt.Fprintln(t, "\t", strings.Join(names, "\t"), "\t")
printRow := func(i int) {
row := make([]string, len(series))
for j, s := range series {
switch typ := s.Value(i).(type) {
case time.Time:
row[j] = typ.Format("2006-01-02 15:04:05")
case string:
row[j] = fmt.Sprintf("%q", typ)
default:
row[j] = fmt.Sprintf("%v", typ)
}
}
fmt.Fprintln(t, strconv.Itoa(i), "\t", strings.Join(row, "\t"), "\t")
}
// Print the first ten rows and the last ten rows if the DataFrame has more than 20 rows.
if d.Len() > 20 {
for i := 0; i < 10; i++ {
printRow(i)
}
fmt.Fprintf(t, "...\t")
for range names {
fmt.Fprint(t, "\t") // Keeps alignment.
}
fmt.Fprintln(t) // Print new line character.
for i := 10; i > 0; i-- {
printRow(d.Len() - i)
}
} else {
for i := 0; i < d.Len(); i++ {
printRow(i)
}
}
t.Flush()
return buffer.String()
}
// Date returns the value of the Date column at index i. The first value is at index 0. A negative value for i (-n) can be used to get n values from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
// This is the equivalent to calling Time("Date", i).
func (d *DataFrame) Date(i int) time.Time {
return d.Time("Date", i)
}
// Open returns the open price of the candle at index i. The first candle is at index 0. A negative value for i (-n) can be used to get n candles from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
// This is the equivalent to calling Float("Open", i).
func (d *DataFrame) Open(i int) float64 {
return d.Float("Open", i)
}
// High returns the high price of the candle at index i. The first candle is at index 0. A negative value for i (-n) can be used to get n candles from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
// This is the equivalent to calling Float("High", i).
func (d *DataFrame) High(i int) float64 {
return d.Float("High", i)
}
// Low returns the low price of the candle at index i. The first candle is at index 0. A negative value for i (-n) can be used to get n candles from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
// This is the equivalent to calling Float("Low", i).
func (d *DataFrame) Low(i int) float64 {
return d.Float("Low", i)
}
// Close returns the close price of the candle at index i. The first candle is at index 0. A negative value for i (-n) can be used to get n candles from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
// This is the equivalent to calling Float("Close", i).
func (d *DataFrame) Close(i int) float64 {
return d.Float("Close", i)
}
// Volume returns the volume of the candle at index i. The first candle is at index 0. A negative value for i (-n) can be used to get n candles from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
// This is the equivalent to calling Float("Volume", i).
func (d *DataFrame) Volume(i int) float64 {
return d.Float("Volume", i)
}
// Dates returns a Series of all the dates in the DataFrame.
func (d *DataFrame) Dates() Series {
return d.Series("Date")
}
// Opens returns a Series of all the open prices in the DataFrame.
func (d *DataFrame) Opens() Series {
return d.Series("Open")
}
// Highs returns a Series of all the high prices in the DataFrame.
func (d *DataFrame) Highs() Series {
return d.Series("High")
}
// Lows returns a Series of all the low prices in the DataFrame.
func (d *DataFrame) Lows() Series {
return d.Series("Low")
}
// Closes returns a Series of all the close prices in the DataFrame.
func (d *DataFrame) Closes() Series {
return d.Series("Close")
}
// Volumes returns a Series of all the volumes in the DataFrame.
func (d *DataFrame) Volumes() Series {
return d.Series("Volume")
}
func (d *DataFrame) Contains(names ...string) bool {
for _, name := range names {
if _, ok := d.series[name]; !ok {
return false
}
}
return true
}
func (d *DataFrame) ContainsDOHLCV() bool {
return d.Contains("Date", "Open", "High", "Low", "Close", "Volume")
}
func (d *DataFrame) PushCandle(date time.Time, open, high, low, close float64, volume int64) error {
if len(d.series) == 0 {
d.PushSeries(
NewDataSeries(df.NewSeriesTime("Date", nil, date)),
NewDataSeries(df.NewSeriesFloat64("Open", nil, open)),
NewDataSeries(df.NewSeriesFloat64("High", nil, high)),
NewDataSeries(df.NewSeriesFloat64("Low", nil, low)),
NewDataSeries(df.NewSeriesFloat64("Close", nil, close)),
NewDataSeries(df.NewSeriesInt64("Volume", nil, volume)),
)
return nil
}
if !d.ContainsDOHLCV() {
return fmt.Errorf("DataFrame does not contain Date, Open, High, Low, Close, Volume columns")
}
d.series["Date"].Push(date)
d.series["Open"].Push(open)
d.series["High"].Push(high)
d.series["Low"].Push(low)
d.series["Close"].Push(close)
d.series["Volume"].Push(volume)
return nil
}
func (d *DataFrame) PushValues(values map[string]interface{}) error {
if len(d.series) == 0 {
return fmt.Errorf("DataFrame has no columns") // TODO: could create the columns here.
}
for name, value := range values {
if _, ok := d.series[name]; !ok {
return fmt.Errorf("DataFrame does not contain column %q", name)
}
d.series[name].Push(value)
}
return nil
}
func (d *DataFrame) PushSeries(series ...Series) error {
if d.series == nil {
d.series = make(map[string]Series, len(series))
d.rowCounts = make(map[string]int, len(series))
}
for _, s := range series {
name := s.Name()
s.SignalConnect("LengthChanged", d.onSeriesLengthChanged, name)
s.SignalConnect("NameChanged", d.onSeriesNameChanged, name)
d.series[name] = s
d.rowCounts[name] = s.Len()
}
return nil
}
func (d *DataFrame) RemoveSeries(name string) {
s, ok := d.series[name]
if !ok {
return
}
s.SignalDisconnect("LengthChanged", d.onSeriesLengthChanged)
s.SignalDisconnect("NameChanged", d.onSeriesNameChanged)
delete(d.series, name)
delete(d.rowCounts, name)
}
func (d *DataFrame) onSeriesLengthChanged(args ...interface{}) {
if len(args) != 2 {
panic(fmt.Sprintf("expected two arguments, got %d", len(args)))
}
newLen := args[0].(int)
name := args[1].(string)
d.rowCounts[name] = newLen
}
func (d *DataFrame) onSeriesNameChanged(args ...interface{}) {
if len(args) != 2 {
panic(fmt.Sprintf("expected two arguments, got %d", len(args)))
}
newName := args[0].(string)
oldName := args[1].(string)
d.series[newName] = d.series[oldName]
d.rowCounts[newName] = d.rowCounts[oldName]
delete(d.series, oldName)
delete(d.rowCounts, oldName)
// Reconnect our signal handlers to update the name we use in the handlers.
d.series[newName].SignalDisconnect("LengthChanged", d.onSeriesLengthChanged)
d.series[newName].SignalDisconnect("NameChanged", d.onSeriesNameChanged)
d.series[newName].SignalConnect("LengthChanged", d.onSeriesLengthChanged, newName)
d.series[newName].SignalConnect("NameChanged", d.onSeriesNameChanged, newName)
}
func (d *DataFrame) Names() []string {
return maps.Keys(d.series)
}
// Series returns a Series of the column with the given name. If the column does not exist, nil is returned.
func (d *DataFrame) Series(name string) Series {
if len(d.series) == 0 {
return nil
}
v, ok := d.series[name]
if !ok {
return nil
}
return v
}
// Value returns the value of the column at index i. The first value is at index 0. A negative value for i can be used to get i values from the latest, like Python's negative indexing. If i is out of bounds, nil is returned.
func (d *DataFrame) Value(column string, i int) interface{} {
if len(d.series) == 0 {
return nil
}
i = EasyIndex(i, d.Len()) // Allow for negative indexing.
if i < 0 || i >= d.Len() { // Prevent out of bounds access.
return nil
}
return d.series[column].Value(i)
}
// Float returns the value of the column at index i casted to float64. The first value is at index 0. A negative value for i (-n) can be used to get n values from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
func (d *DataFrame) Float(column string, i int) float64 {
val := d.Value(column, i)
if val == nil {
return 0
}
switch val := val.(type) {
case float64:
return val
default:
return 0
}
}
// Int returns the value of the column at index i casted to int. The first value is at index 0. A negative value for i (-n) can be used to get n values from the latest, like Python's negative indexing. If i is out of bounds, 0 is returned.
func (d *DataFrame) Int(column string, i int) int64 {
val := d.Value(column, i)
if val == nil {
return 0
}
switch val := val.(type) {
case int64:
return val
default:
return 0
}
}
// String returns the value of the column at index i casted to string. The first value is at index 0. A negative value for i (-n) can be used to get n values from the latest, like Python's negative indexing. If i is out of bounds, "" is returned.
func (d *DataFrame) Str(column string, i int) string {
val := d.Value(column, i)
if val == nil {
return ""
}
switch val := val.(type) {
case string:
return val
default:
return ""
}
}
// Time returns the value of the column at index i casted to time.Time. The first value is at index 0. A negative value for i (-n) can be used to get n values from the latest, like Python's negative indexing. If i is out of bounds, time.Time{} is returned.
func (d *DataFrame) Time(column string, i int) time.Time {
val := d.Value(column, i)
if val == nil {
return time.Time{}
}
switch val := val.(type) {
case time.Time:
return val
default:
return time.Time{}
}
}
type DataCSVLayout struct {
LatestFirst bool // Whether the latest data is first in the dataframe. If false, the latest data is last.
DateFormat string // The format of the date column. Example: "03/22/2006". See https://pkg.go.dev/time#pkg-constants for more information.
Date string
Open string
High string
Low string
Close string
Volume string
}
func EURUSD() (*DataFrame, error) {
return DataFrameFromCSVLayout("./EUR_USD Historical Data.csv", DataCSVLayout{
LatestFirst: true,
DateFormat: "01/02/2006",
Date: "\ufeff\"Date\"",
Open: "Open",
High: "High",
Low: "Low",
Close: "Price",
Volume: "Vol.",
})
}
func DataFrameFromCSVLayout(path string, layout DataCSVLayout) (*DataFrame, error) {
f, err := os.Open(path)
if err != nil {
return nil, err
}
defer f.Close()
return DataFrameFromCSVReaderLayout(f, layout)
}
func DataFrameFromCSVReaderLayout(r io.Reader, layout DataCSVLayout) (*DataFrame, error) {
data, err := DataFrameFromCSVReader(r, layout.DateFormat, layout.LatestFirst)
if err != nil {
return data, err
}
// Rename the columns and remove any columns that are not needed.
for _, name := range data.Names() {
var newName string
switch name {
case layout.Date:
newName = "Date"
case layout.Open:
newName = "Open"
case layout.High:
newName = "High"
case layout.Low:
newName = "Low"
case layout.Close:
newName = "Close"
case layout.Volume:
newName = "Volume"
default:
data.RemoveSeries(name)
continue
}
data.Series(name).SetName(newName)
}
// err = data.ReorderColumns([]string{"Date", "Open", "High", "Low", "Close", "Volume"})
// if err != nil {
// return data, err
// }
// TODO: Reverse the dataframe if the latest data is first.
return data, nil
}
func DataFrameFromCSVReader(r io.Reader, dateLayout string, readReversed bool) (*DataFrame, error) {
csv := csv.NewReader(r)
csv.LazyQuotes = true
records, err := csv.ReadAll()
if err != nil {
return nil, err
}
if len(records) < 2 {
return nil, errors.New("csv file must have at least 2 rows")
}
dfSeriesSlice := make([]df.Series, 0, 12)
// TODO: change Capacity to Size.
initOptions := &df.SeriesInit{Capacity: len(records) - 1}
// Replace column names with standard ones.
for j, val := range records[0] {
// Check what type the next row is to determine the type of the series.
nextRow := records[1][j]
var series df.Series
if _, err := strconv.ParseFloat(nextRow, 64); err == nil {
series = df.NewSeriesFloat64(val, initOptions)
} else if _, err := strconv.ParseInt(nextRow, 10, 64); err == nil {
series = df.NewSeriesInt64(val, initOptions)
} else if _, err := time.Parse(dateLayout, nextRow); err == nil {
series = df.NewSeriesTime(val, initOptions)
} else {
series = df.NewSeriesString(val, initOptions)
}
// Create the series columns and label them.
dfSeriesSlice = append(dfSeriesSlice, series)
}
// Set the direction to iterate the records.
var startIdx, stopIdx, inc int
if readReversed {
startIdx = len(records) - 1
stopIdx = 0 // Stop before the first row because it contains the column names.
inc = -1
} else {
startIdx = 1 // Skip first row because it contains the column names.
stopIdx = len(records)
inc = 1
}
for i := startIdx; i != stopIdx; i += inc {
rec := records[i]
// Add rows to the series.
for j, val := range rec {
series := dfSeriesSlice[j]
switch series.Type() {
case "float64":
val, err := strconv.ParseFloat(val, 64)
if err != nil {
series.Append(nil)
} else {
series.Append(val)
}
case "int64":
val, err := strconv.ParseInt(val, 10, 64)
if err != nil {
series.Append(nil)
} else {
series.Append(val)
}
case "time":
val, err := time.Parse(dateLayout, val)
if err != nil {
series.Append(nil)
} else {
series.Append(val)
}
case "string":
series.Append(val)
}
dfSeriesSlice[j] = series
}
}
// NOTE: we specifically construct the DataFrame at the end of the function because it likes to set
// state like number of rows and columns at initialization and won't let you change it later.
seriesSlice := make([]Series, len(dfSeriesSlice))
for i, series := range dfSeriesSlice {
seriesSlice[i] = NewDataSeries(series)
}
return NewDataFrame(seriesSlice...), nil
}